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1. (Exercise 8.2.15 of [BS11]) Let g, (x) := na(1 —x)" for x € [0,1],n € N. Discuss the
convergence of (g,,) and ( fol gndz).

Solution. Note first that when = = 0, g,(0) = 0 for all n € N. Now let x € (0, 1].
Then we employ the ratio test (Theorem 3.2.11 of [BS11]). We have

gne1(x)  (n+ Dz —o)""  (n+1)(1 - 2x)

gnlx) nx(l —x)" n

1
=l—-az+—-(1l—-z)—>1—-x<lasn—+o0
n

and hence by the Ratio test, we conclude that g,(z) — 0 as n — +oo for all
x € (0,1].

For the convergence of ( fol gn(z)dz), we show that g, is uniformly bounded on [0, 1]
for all n € N and use the Bounded Convergence Theorem (Theorem 8.2.5 of [BS11]).
In the first derivative test, we have

1
n+1

0=g.(z)=n(l—2)" —nz(l—z)" ' =z =

and using the second derivative, we have

gn(x) = —2n2(1 = 2)"~ + n¥(n — Da(l — 2)" 2

et () o () ()
_ —(1+n)n< Zl>n_1 <0

n

and hence we see that g, (x) achieves maximum on [0, 1] at x = n%l with value

1 1 1 " n "
In =n 1—- = <1
n+1 n+1 n+1 n+1

Moreover, since g,(z) > 0 on [0, 1], we see that |g,(z)] < 1 for all n € N and
x € [0,1] and so by the Bounded Convergence Theorem, we conclude that

1 1 1
lim Gn(x)dr = / lim g¢,(z)dz = / Odx = 0.
0 0 0

n——+o00o n—-+00

<

2. (Exercise 8.2.17 of [BS11]) Let f,,(z) := 1 for x € (0,1/n) and f,(x) := 0 elsewhere
in [0,1]. Show that (f,) is a decreasing sequence of discontinuous functions that
converges to a continuous limit function, but the convergence is not uniform on
[0, 1].
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Solution. It is clear that each f, is discontinuous at x = 1/n. Observe that

0, 0<0<-
fn(x)_fn—i-l(x): 1, %HSI<% :fn<x)_fn+1(x) >0,z € [071]
0, {<zx<1

and hence f,, is a decreasing sequence of functions. We show that f,, converges to
f(z) := 0 for x € [0,1]: Note that f,(0) = 0 for all n € N. Now let zy € (0,1] be
given. Then we can find an N € N such that % < xo and hence for all n > N,
| fu(z0)| = 0. So f,, converges pointwise to the zero function, which is continuous on

0, 1], since it is constant.
On the other hand, we show that we can find a sequence (x,) C [0,1] such that
| fu(zn) — f(x,)] > 1 to show that this convergence is not uniform. Let x, = 2
n
1 1
then we see that since 0 < 7 < —, ‘fn (%)‘ =1 for all n € N, as required. <
n o n

3. (Exercise 8.3.8 of [BS11]) Let f : R — R be such that f'(z) = f(x) for all z € R.
Show that there exists K € R such that f(z) = Ke” for all x € R.

Solution. We split into two cases. We first consider the case when f(0) # 0. Then
g(x) := f(x)/f(0) is well-defined for x € R and we verify the following:

oy P@ @)
_f0) _
90 =) ="

Then g(z) satisfies the properties of the function in Theorem 8.3.1 of [BS11] and by
the uniqueness theorem (Theorem 8.3.4 of [BS11]), we have that g(z) = e*. Hence,
we have that f(x) = f(0)e” and so we take K = f(0).

The second case is if f(0) = 0. Then we will show f(z) = 0 using the argument in
the proof of Theorem 8.3.4 of [BS11]. By induction, f(™ (z) exists on R for all n € N
and equals f(z): the base case is given by the assumption in the question; if f™(z)
exists on R and equals f(z), then f"*V(z) = (f™(2)) = (f(2)) = f'(z) = f(z)
and hence f+1)(z) exists on R and equals f(x). Let # € R be given. Then f(t) is
bounded on [0, z], that is, there is an M > 0 such that |f(¢)] < M for all ¢ € [0, z].
Then by Taylor expansion, there is a ¢, € [0, 2] such that

' i (n-1) ()
= 10+ £ L0y L0 s )
_ ‘f(n)('cn)xn - M,le”
n: n!

M
since this is true for all n € N and lirf —‘|x|” = 0, we have that f(z) = 0. Hence,

we can take K = 0 in this case. |
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4. (Exercise 8.3.9 of [BS11]) Let ar, >0 for k=1,...,nand let A:= (a1 +---+a,)/n
be the arithmetic mean of these numbers. For each k, put =y := ax/A — 1 in
the inequality 1 4+ = < e®. Multiply the resulting terms to prove the Arithmetic-
Geometric Mean Inequality

1
(a/l..~a,n)1/n 2(0,1 —'— +an) (1)
Moreover, show that the equality holds in 1 if and only if a1 = as = --- = a,.

Solution. Defining z; as in the question, and following the suggested argument,
we see that
1+x, <e®™ foreachk=1,....n

Multiplying all of these inequalities together, we obtain

H L4 mx;) <ee™---e" =exp (Zxk>
k=1 =1

B <a1+a2+---—|—an > <nA ) 0
= exp —n|=exp|——n)=e =1.

A A

n

The left-hand side simplifies to [ (1 + =) = H % and hence
k=1 =1

n n n 1/n
sz HakgA":><Hak> <A

which is the required Arithmetic-Geometric Mean inequality. Note that equality
holds in the product inequality above if and only if both sides of the inequality is 1,
that is, xy = 0 for each k. Then this gives x, =1 < ap = A foreach k =1,... n,
that is, if and only if a; = as = -+ =a, = A. |

5. (Exercise 9.1.6 of [BS11]) Find an explicit expression for the nth partial sum of
> In(1 — 1/n?) to show that this series converges to —In2. Is this convergence

n=2
absolute?

Solution. Let n > 2 be fixed. We consider the n-th partial sum:

sn:iln<1——) im(k’_l) iln (k—1) +In(k + 1) — 21In(k)

using logarithmic identities. We prove using induction that this sum is equal to
—1In(2) — In(n) + In(n + 1) for each n. Note that the base case of n = 2 is trivial.
Suppose s, = —In(2) —In(n) + In(n + 1) for some n. Then by above,

Sn+1 = Sp +In(n) +In(n +2) —2In(n + 1)
—In(2) = In(n) +In(n+ 1) + In(n) + In(n + 2) — 2In(n + 1)
—In(2) —In(n+1) +In(n + 2)
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which is the desired formula for s,,; and hence the explicit formula for the n-th
partial sum is
sp = —In(2) —In(n) + In(n + 1).

We prove that the sum converges to —In(2). By the continuity of In(z), we have
lim s, = —In(2) + lim In (

1
) —In(2 —l—ln(limn+ )
n—o00 n—o00 n—oco N

—In(2) +In(1) = —In(2).

1 1
Note that for n > 2, 1 — — < 1 and hence each summand In | 1 — — | < 0.
n n
Therefore, to show that the series is absolutely convergent, we need to show that

& 1 & 1
> |In (1 - —2) = > —In (1 - —2) converges. A similar induction argument
n=2 n n=2 n

shows that each partial sum in this new series is simply

—$, =In(2) + In(n) —In(n + 1) = In(2) + In ( n 1) — In(2) as n — oo.

n -+

Therefore, we conclude that the series is absolutely convergent. <

6. (Exercise 9.1.12 of [BS11]) Let a > 0. Show that the series > (1+a™)~! is divergent
if 0 < a <1 and is convergent if a > 1.

Solution. We make use of the fact that if the series > a, converges, then lim a, =
n=1 n—oo

0. Taking contrapositive, if hm a, # 0, then the series Z a, diverges (in the

textbook, this is called the n- th Term Test, Theorem 3.7.3 of [BS11]). When 0 <

a <1, a" — 0asn — oo and hence — 1 # 0 as n — oo and so by above,

+a”

the series diverges. Similarly, when a = 1, Tra 2 and so the series diverges.
an
When a > 1, we have

1 1 " = /1\" 1
<—: — d — = —
14+a” ~ a» (a) A Z (a) 1-1/a

n=1

the geometric series with ratio 0 < 1/a < 1. Hence by the comparison test,

> —

— converges in this case. <
a
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